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On the Convergence of Collocation Methods for 
Symm's Integral Equation on Open Curves 

By M. Costabel, V. J. Ervin, and E. P. Stephan* 

Abstract. Recently, Costabel and Stephan in [8] presented convergence proofs for col- 
location with piecewise linear trial functions for Symm's integral equation on plane 
closed curves with corners. In this article we prove the convergence of the above col- 
location method in the case of open curves. We derive asymptotic error estimates in 
Sobolev norms and analyze the effect of graded meshes. Numerical experiments based 
on the implementation of [6] show experimental orders of convergence which confirm our 
theoretical results on the asymptotic rates of convergence. 

0. Introduction. In this paper we give convergence proofs and asymptotic er- 
ror estimates in Sobolev norms for collocation with piecewise linear spline trial 
functions applied to the integral equation of the first kind with single layer po- 
tential ("Symm's integral equation") on open curves. Our results are obtained by 
a refinement of the analysis in [8] where the collocation method for closed, poly- 
gonal curves is investigated. Besides [8], convergence proofs and error estimates 
for boundary element collocation methods have been only available in the follow- 
ing cases: Fredholm integral equations of the second kind [4], [5], one-dimensional 
pseudodifferential equations and singular integral equations with piecewise smooth 
coefficients on smooth closed curves [2], [3], [12], [17], [18], [19], [20]. In this article 
we use again an idea of Arnold and Wendland [2], namely considering Dirac delta 
functions (the "test functions" in the collocation method) as second derivatives 
of piecewise linear functions. Therefore, similar results as presented here should 
be possible for splines of higher odd order. Corresponding results for even-order 
splines are not yet available; compare however [10]. The method of Fourier series 
that yields the convergence proof in the case of a smooth, closed boundary [18] 
cannot be applied to open curves where the endpoints can be viewed as vertices 
with angle 2wr. 

For brevity we consider only the case where F is a smooth arc with endpoints 
z1 and Z2. All the results remain valid in the case of F consisting of finitely many 
open arcs which do not intersect themselves. Furthermore, let f be a smooth, closed 
curve containing F. Then the Sobolev spaces H8 (F) are defined for s > 0 as being 
the restrictions of HS+1/2(R2) to f and for s < 0 by duality: H8(f) = (H- (f))' 
and HO (f) = L2 (f). These spaces (see [14]) are used to define the corresponding 
spaces of distributions on F, namely, for any real s, 

H18(F) = {u E H8(F): suppu C F} 
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and 
H8(F) = {up r: u E H8(f)}. 

The paper is organized as follows: In Section 1 we present from [8] some facts 
on the convergence of general projection methods (Lemma 1.2). They are stated in 
a form which is convenient for the application to collocation methods and allows 
easy incorporation of localization arguments. For the localization principle, see 
[12], [15]. Utilizing those facts, we prove convergence, stability and error estimates 
for the collocation method with piecewise linear splines applied to Symm's integral 
equation (Theorem 1.1). 

In Section 2 we investigate the asymptotic order of convergence in weighted 
Sobolev norms. We prove a new approximation result in those weighted norms 
(Lemma 2.1) and we show that (analogously to the case of a polygonal curve F) 
the use of suitably graded meshes improves convergence (Theorem 2.2). 

In Section 3 we present numerical results for the implementation of our collo- 
cation scheme applied to two sample problems: (i) the lateral crack and (ii) the 
interior crack of a membrane. In both examples the computed experimental order 
of convergence confirms our theoretical error analysis of Section 2. 

1. Collocation for the Single Layer Potential. The integral equation of 
the first kind with logarithmic kernel ("Symm's integral equation") is one of the 
classical integral equations of potential theory. It arises, e.g., from a single layer 
representation for the solution of the Dirichlet problem, and it has also well-known 
applications in conformal mappings. For the integral equation of the first kind on 
an open piece of a curve F, 

(1.1) Vu = g, 

we consider convergence of the collocation method with piecewise linear trial func- 
tions. Here the operator V of the single layer potential is defined by 

(1.2) Vu(z) := - u(?) log Iz - FJ ds(?)l 
7r 

where s(?) is the arc length on F. It is known [7] that V: H8(F) -+ HS+l(F) is 
continuous and bijective for all s E (-1,0), provided the analytic capacity of r is 
not equal to one. We shall assume this in the sequel. 

For the collocation method we need a grid A = {x1,.. . , XN} C r, the x; being 
both the collocation points and the mesh points of the trial functions. By S1 (3L) 

we denote the N-dimensional space of splines of order 1, i.e., each u E S1 (Lx) is a 
continuous function on r that is a linear function of the arc length on each segment 

xjxjy+,, j = O,.. .., N -1. Let h := maxflxj+1 -xjl: j = O. ... ., N - 1. We do not 
impose a uniformity condition on i\, but assume only that h -+ 0 as N tends to 
infinity. 

We require that the endpoints zi, Z2 are grid points, namely z1 = xO Z2 = XN 

and define 

S1(L^) := {v E S1(AL) I v(zj) = 0, j =1121 
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Here the weight function p > 0 satisfies p E Coo (R2\{z1, Z2}) and 

p(z) = - zjI in a neighborhood of zj, j=1, 2. 

Thus S1(L) and SI'(A) have dimension N - 2, and the elements of Sp'(A) are 
continuous on F and (for h small enough) take constant values on the two grid 
segments that end at the crack tips zj. The N - 2 collocation equations are 

(1.3) VUN(Xn) = 9(Xn), Xn E 3L\{Z1 Z2}, with UN E S1(A-). 

In order to show convergence of the collocation method (1.3), we need the 
weighted Sobolev space 

(1.4) H,1/2(F) := l1/2(r) = {u I pu E H112 (r)} 

with the norm 

(1.5) I|U||fH1/2 := |IPUJIft1/2. 
p 

In the following we prove the following convergence and stability result for the 
collocation scheme (1.3). 

THEOREM 1. 1. There exist NO E N and C > 0 such that for all g E H1/2 (F) 

with u = V-1g E f-1/2(F) satisfying pu E Hk/2(F) there exists a unique solution 
UN E S1p (A) of (1.3), and 

11UNJHft1/2(F) < C(QIUIHt1/2(p) + 11U11H-1/2(r)) (stability) 

and 

1U - UN|ftH/2(r) < Cinf{|1U - UH-1/2(r) + JU - UHlft/2(r) I U E Sp (A)} 

(quasioptimality). 

For the proof of Theorem 1.1 we follow the ideas in [8] and therefore need some 
results on the convergence of projection methods including compact perturbations 
and spaces with two norms. Such results are well known [11], [13], [16], but we 
present from [8] a formulation which is particularly adapted to the present case. 

Let X and Y be Banach spaces and A: X -+ Y be bijective and continuous. For 
the approximate solution of the equation 

(1.6) AU = f 

we assume that we have a sequence of finite-dimensional subspaces 

VN C X, TNCY. dimVN= dimp<o o, 

and we replace Eq. (1.6) by the relation for UN E VN 

(1.7) (t, AUN) = (t, f) for all t E TN, 

where (, ) denotes the duality between Y and its dual Y'. We make the following 
assumptions: 

(i) There exist bounded operators PN: Y' -+ TN that converge on Y' strongly 
to the identity operator. 

(ii) There is a Banach space X0, continuously embedded in X (hence, J|xJ|x < 

Cllxllx0 for all x E Xo and some constant C). 
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(iii) For all N there holds VN C Xo. 
(iv) For all N we are given a mapping QN: VN -+ TN and a constant M such 

that 

(1.8) |(QNu,Aw)I < MJluJJx JwJJx. for all v E VN, w E X0, N E N. 

(v) There exists a collectively compact sequence of operators CN: X -+ X' in 
the sense of [1] and a constant '- > 0 such that 

(1.9) I(QNVAV) + (CNV,V)l > -lJVJJx for all v E VN, N E N. 

LEMMA 1.2 ([8], [9]). Under the above conditions (i)-(v) there exists NO E N 
such that for all N > NO the system (1.7) has a unique solution UN E VN for any 
f E Y. There is a constant C such that for this approximate solution UN and the 
true solution u there holds 

llUNHJX < ClluJJx0 for all u E X0, N > NO, 

lU- UN||X < Cinf{Hu - illx I i E VN}. 

Remark. We shall need the lemma only for the case of QN and CN not depending 
on N. Thus QN Q: X0 -+ Y' will be a linear operator satisfying 

QVN C TN for all N E N, 

and CN _ C: X -+ X' will be a compact operator, or equivalently, the quadratic 
form v ~-4 (Cv, v) appearing in (1.9) will be completely continuous on X. 

Proof of Theorem 1.1. We set X := HfV2 and X0 := H2 n H- /2(F) with the 
norm 

||U|X12:= IIUI1/2 + JlUfl- 

With A := V and Y := AX, the hypotheses of Lemma 1.2 are satisfied, as we will 
show in the following. 

1. First we observe that V is well defined on X, since any u E HV2 belongs to 
k-l/2-,(r) E > 0, and V is defined on H-1/2-,(F) by continuous extension from 

1- /2(F). V is also invective in X since V: H-1/2+, (F) -+ H1/2+(Fr), Jul < 1/2, 
is bijective. The latter result was shown in [7]. 

2. Next we define 

S-1(L) :- { E s-1(L) I supp $ n {Z1, Z2} = 0}, 

where 

S-1(L) :=span{6(x-Xn) I n =1, Nj 

Then 

dim Spl( dim sO-'1( N - 2 

and u E Sp'(A) implies pD2PU ES-1(A). Thus we set VN := S(A), TN 

S-1 (A) and Q := pD2p, where D2 denotes the second distributional derivative 
with respect to arc length. Then the collocation equations (1.3), or (1.7), are given 
by 

(1.10) (pD2pv,Vu) = (pD2pvg) for all v E Sp'(A-) (with t = pD2pv). 
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3. Now we check the hypotheses of the lemma: Assumption (ii) is trivial. Con- 
cerning assumption (iii), we note that every v E Sp(A) is continuous on F. Thus, 
VN C X0 holds. It remains to show the estimates (1.8) and (1.9). 

We remark that outside the neighborhoods of the endpoints of F, the spaces X 
and XO coincide with H12(F), where F is a smooth curve. For the latter case, 
the estimates (1.8), (1.9) are well known from the calculus of pseudodifferential 
operators, namely there exists a -q > 0 such that for all v E H1/2(f) 

(D 2V, VV) > _YIIV I21/2 r 

Therefore, by the localization principle (see Lemma 1.4 in [8]), it suffices to show 
the estimates (1.8) and (1.9) for F = R+ = [0, oo). 

Thus, we only consider F = R+ and the bilinear form 

(1.11) b(v, w) := (Dpv, DpVW)L2(R+), 

where v, w E CO (R+) with support in a fixed compact set and p(z) = I on the 
support of v and w. Thus, (pv)(x) = xv(x) on R+. For all v,w E CO (R+) we 
have 

(1.12) b(v, w) = bi (v, w) + b2(v, w) 

with 

bi (v, w) := (Dpv, VDpw), b2(v, w) := (Dpv, Vw), 

since pDV = VDp on R+. Furthermore, the following estimates hold with - > 0 
and M independent of v, w: 

(1.13) jbi(v,w)| < M?jV jft1/2(r) lW jft1/2(r) 

(1.14) Re(bi(v,v) + (Cv,v)) > .lVIIVI1/2(r) 

with a compact operator C, 

(1.15) jb2(v,w)j < Mlvllft1/2(r)(IlwIlft/2(r) + Hjwjft-1/2(r)). 

These estimates follow from the following known properties of the operator V (see 
[8]): 

j(Dpv, VDpw)j < MIjDpvIftl/2(r) IjDpwjjHfl/2(r), 

Re(Dpv, VDpv) > -fljDpvfl- H- 1/2 (r) I 

j(Dpv, Vw) < M jDpvlj 17-1/2(r) IIWIIp-1/2 

Here we remark that the norms 

jjDPvjljfl/2(P) and H|PVHft1/2(p) (=: jVjHft1/2(,)) 

are equivalent, since the differential operator D is an isomorphism from H1/2(F) 

onto a closed subspace of lB1/2(F). 
Altogether, with (1.12)-(1.15), there follows that for the bilinear form b(., ) in 

(1.11) we can apply Lemma 1.2, which yields Theorem 1.1. E 
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2. Order of Convergence. From the error estimates in Theorem 1.1 one can 
derive convergence orders simply by using results on the order of best spline approx- 
imation in the respective norms. We need here a result on spline approximation 
in weighted Sobolev spaces similar to the result derived in [8], [9], where polygonal 
domains with angles w :$ 2wr are considered. The limit case w = 2wr representing an 
open piece of a curve, considered here, is not covered by the analysis in [8], [9]. 

We assume that u E H-1/2(F) is the solution of the equation Vu = f with f 
sufficiently smooth, where F is an open piece of a curve. Then u has the following 
properties: 

(i) u E H`(F), pu E H1-6 (any E > 0), 
(ii) Pu = o(p1/2)1 Dpu = O(p-1/2) near the endpoints of F. 

We approximate u by its interpolation iL in Sp (A). Thus, if we define 

w:= pu, w := pu, 

then wi is the piecewise linear interpolant of w with nodes in AL. Note that w is 
continuous on F and vanishes at the endpoints of F. Now for the error estimate 
it suffices to consider a neighborhood of the endpoints, because outside such a 
neighborhood, u is smooth and therefore one has an approximation of order h3/2 
in the H1/2-norm. 

We consider a one-sided neighborhood of one endpoint and assume that it is 
parametrized by the unit interval. We further assume that 

p(x) = x 

and u is given on [0,1] with the properties (i) and (ii) above. We define ui, w and 
wi as above. We assume that the grid AL has the form 

(2.1) xj = (jh)l, j = O.. , N = 1/h, 

with some 3 > 1. We have to estimate the two norms on [0,1], 

11u-i 4f1/2 and 11w-ti3Ij12. 

LEMMA 2. 1. There is a constant C such that 

11U - fillk-112 + OCh 
for 1 > 2, 

11+W WllHk/2 
_i 

Ch( '2)- for 1 < 3 < 2 (E > 0). 
Proof. From the estimates (ii) above we find for x E [xj, xj+1], 1 < j < N - 1: 

(W - 3)(x)I < 8 lXj+l - Xji2 sup 
8E[XjXj+1] 

< Ch_/2(j + 1)fl/2-2 

and 
(w - wi))'(x) I < I xj+ i - xj I sup l w" (0) 

E[fxj,xj+1] 

< Ch -/2 (j + 1) /21 

We then estimate the following integrals for 1 < j < N - 1: 
f X3 +1 

X 223( )23-5 ]j =t l(w - (x)2 dx < Ch2(j+) 

j+2 j (w-w)' (x) 12 dx < C(j + i)-3. 
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This gives on [xi, 1] 

N-1 N 

- w_ L 7 21 1] = 5 f1 < Ch2, j25'-5, 
j=i j=2 

where the sum on the right-hand side is bounded for 2,3 -5 < -1 and bounded by 
CN 23-4 = Ch4-213 for 2,3 -5 > -1. Therefore, we obtain 

(2.2) 11 - wV1X1i ? { CV fo { } 2 

Furthermore, using the estimate for 72, we find 

(2.3) W _ 
-1W)'H12[X 1<] Cho for all O. 

Interpolation between (2.2) and (2.3) gives 

IW- wH|H1/2[xji] < C h f/2 r{ } 2 

In order to get corresponding norm estimates on [0, xi], we set 

W=wo+wl wh-T on [O,xi], = w-wi3 on [O,xi], 
w on [xi,1], 0 on [xi,1], 

where 

w (x) = W( x on [O,xi] 
Xi 

coincides with w at x = 0 and at x = xi. Hence, 

W 0 on [.xi 1], 

and therefore interpolation of the estimates (2.2) and (2.3) yields 

||WO-WIIH1/2?{ < Ch/2 for { } 2 

Since w - = (wo - wi) + wi, it remains to estimate wi on [0, xi]. First we observe 

for its seminorm in H1!2: 

ff Wi (X) _ Wi (y) 12 /4 W(X)2 d 
(2.4) jij<22 I - Y2 ddy 

+ fj i(X)-Wi(y) 2 dy dx. 

By the mean value theorem we have 

(2.5) Iwi(x) I < C(x1/2 + xx 1/2) < Ch1312 for x < xi = h. 

So for all 3 and xi = hV we get 
j 

IW1()I2 dx = 
fi 

IW(X)2 dx < 
f 

C(l + xh-/3) dx < Ch/3 
O x xo 

and 

IW1122 < Ch213. 
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For the second integral on the right-hand side in (2.4) we have, after the change of 
variables y = x + z, 
(2.6) 

j1 j1-X IW (X) - W (X + Z) 12 dxdz 

IZ 12 i( z 1 

= f|l f|X Iwi()12 - dzdx + 2 f Iwi(z) - dz dx. 
? X-X Z o oZ 

With w1 (xj) = 0, application of the mean value theorem gives 

(2.7) w1(x) = O (xi1-2x)). 

Now we can estimate 

f| f|~X Iwx)I~2 dzdx 
? 1-X Z 

= x1/2 jlx IWd(X)12 dxi J j IW(X1 |Zl 2 1 -Z l () 2dz dx + - l( dz dz < ChV 
? X-X Z X1/2 X1-x Z 

by using the estimate (2.5) for the first integral and (2.7) for the second integral 
on the right-hand side. 

Next we have by the mean value theorem 

(2.8) Iwi(x) - wi(x + z)I = z O(x-1/2 + h- /2). 

Furthermore, from (2.5), 

(2.9) Iwi(x)I + Iwi(x + z)I = (h3/2) 

Now with (2.8) and (2.9), and 1/2 < E < 1, xi = hV, we can estimate the second 
integral on the right-hand side of (2.6) as follows: 

fxi lx 1 Jwt (x) - W (X+z) dZ dx 

o o ~~~Z2 

? cj? ' jZ' Iwi(x) - Z+ (IWi (X)I + IjW (X + z)1)2-2E dzdx 

? Cj j z2E-2(-?1/2 + h-,2,2Eh(1-E)3dzdx 

? C (x1 - x)2-1 (x-E + h-'3)h(1-E)3 dx < Ch:, 

since 
oX1 

/ x-(X1 - X)2'- 1 dx = O(x'). 

Altogether, we thus obtain 

(2.10) IW - 1131f-1/2 < {Ch/2 for 3 
> 2 

From the Sobolev embedding theorem H1/2[0, 1] c LP[0, 1] for all p < oo we 
obtain by duality Lq[O, 1] C H-1/2[0, 1] for all q > 1, i.e., 

||u- uHj-1/2 < CqHU - uiLq for all q > 1. 
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For 1 < q < 2 we observe 
Xj+11 q 

A3 =|_f |(w-i)(x) dx 

(2.11) /2 (fl/X-q { Ch+3(j + i hI32j + 1)(+/2-2)q for y 0 0 

+ x1h-fl/2) for j = 0O 

and thus 

y3 < chI(l-q/2) (j + 1),3(1-q/2)-1-2q for I = O... , N-1. 

This gives, for 1 < q < 2, 

N Chf(l-q/2) { < 4q/(2 - q) L~~q - - Ch 2for > 4q/(2 -q)' 
4=0 

Therefore, with an arbitrary E > 0, 

(2.12) Ilu - illIHf-1/2 < { Ch(3/2)-_ for: {>3 } 4 

Now, from (2.10) and (2.12) the assertion of the lemma follows. E 
Combining Lemma 2.1 and Theorem 1.1 we obtain our final result on the the- 

oretical convergence rate, Theorem 2.2 below. We assume that the grid AL locally 
in a fixed one-sided neighborhood of each endpoint has the form (2.1) in a suitable 
coordinate representation. 

THEOREM 2.2. There exist No E N and C > 0 such that for all g sufficiently 
smooth and N > No, the solutions u E H-'/2(r) of Eq. (1.1) and UN E Si (A) of 
(1.2) satisfy 

IIU - UNI1ft1/2 <F ?c{ h if f3> 2, 
| < h(,12)-E if 1 < 3 < 2. 

For numerical experiments (see Section 3) it is more convenient to measure the 
error in a weighted L2-norm. We have the following approximation property for 
our piecewise linear interpolant ii of u. 

COROLLARY 2.2. There exists a constant C such that 

( {h/2 for 1 < d < 4, 
(2.13) 1lu - f1JIL2 < C' 2 fr >4 P h2 ~for 3 >4, 

where 

||U||L2 := IIP1 /2 U||L2. 

Proof. The estimate (2.13) follows with the arguments in the proof of Lemma 
2.1 if one considers instead of 43 in (2.11) the following term: 

Xj+1 1 2 Xi x+ X 2h-3< Ch foryj= 0, 

X |h (j + 1)5 for j : 0. 

Hence, 

N N ChV for A < 4 
j=0 j=0 

- h for p3> 4. 
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3. Numerical Experiments. Below we present the numerical results of our 
collocation method (for the integral equation of the first kind with the single layer 
potential) for two examples: 1) lateral crack and 2) interior crack problems governed 
by the Laplacian. In both examples we construct the collocation solution using 
piecewise linear trial functions which are discontinuous at the corners. This method 
is implemented in [6] for plane domains with polygonal boundaries. The general 
program described in [6] applies directly to the situation in the examples below, 
i.e., even crack problems can be treated. As shown in Section 2, we need for our 
error analysis slightly different trial functions, namely the piecewise linear functions 
which are constant in the neighboring subintervals of the vertices. Nevertheless, 
numerical tests reveal for both kind of trial functions the same experimental order of 
convergence of the collocation solution. The theoretical orders follow immediately 
from (2.13). 

(1) Lateral crack ro given by the straight line 0 < x < 1, y = 0 in a membrane 
Q given by -1 < x, y < 1: We convert the Dirichlet crack problem (f denotes the 
boundary of the membrane) 

z?v=O inQ, 

v=0 onr=roUf, f=UrlUr2UI73UI74U75 

into the integral equation (1.1), i.e., 

(3.1) Vu(z) = -- j u(f) log Iz - fI ds(f) = g(z) on r, 

where 

9(Z) = 0(Z)- 0(-) ,jn(> log Iz -I ds(f) 

and 

U= - on ro and u=- on r. 
An] O n 

Here, [9v/On] denotes the jump of the normal derivative of v across ro. 

n 
(-1, 1) t 2 (1,1) 

r3 n 

' + ( ?'?)r5 

(-1,-1) n r4 (,1 
n 

FIGURE 1 

(For the direction of the normal vector n, see Figure 1. On r, n is the outwardly 
directed normal, whereas on F0, n points in the positive y-direction.) For v = Im z 
we compute approximations to the solution of (3.1) via the collocation scheme (1.3). 

Table 1.1 contains the weighted L2-error for Example 1 using piecewise linear 
trial functions which are discontinuous at the corners. We present in Table 1.2 the 
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TABLE 1. 1 

Weighted L2-error for Example 1 for piecewise linear trial functions. 

1 2 

Weighted Experimental Weighted Experimental 
NSDES L2-Error Convergence Rate L2-Error Convergence Rate 

4 .2011 7 .1512 7 
.5132 1.0155 

8 .1409 } 1.07479 1 
.5041 1.0118 

16 .09935 5 54 .03709 
.5013 1.0035 

32 .07019 .01850 

at* 0.5 1.0 

a* = theoretical order of convergence, , = mesh grading 
parameter, NSDES = number of boundary elements per 
side. 

TABLE 1. 2 

Weighted L2 -error for Example 1 for piecewise linear trial functions 

which are constant on subintervals next to corners/crack tips. 

1 2 

Weighted Experimental Weighted Experimental 
NSDES L2-Error Convergence Rate L 2-Error Convergence Rate 

4 .2411 .2390 
.5049 0.9713 

8 .1699 .1219 
.4849 0.9943 

16 .1214 .06119 
.4862 0.9979 

32 .08667 .03064 

a* 0.5 1.0 

weighted L2-error computed with piecewise linear trial functions which are constant 
on subintervals next to corners and crack tips. 

(2) Interior crack ro given by -1 < x < 1, y = 0 in an infinite membrane 
Q = R2\ro. Here we consider the exterior Dirichlet problem 

A?v=O inR2\ro, 

v= on slit ro = {-1 < x < 1, y - O} 

with 
$=Ree{z2- 1-z}. 
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TABLE 1.3 

Weighted L2-error for Example 2 for piecewise linear trial functions. 

v 1--- ' [ 2 

Weighted Experimental Weighted Experimental 
NSDE L 2-Error Convergence Rate L 2-Error Convergence Rate 

4 .7491 .5624 ) 
.4602 .9741 

8 .5445 ) .2917 j .9847 

16 .3911 .1474 
.4893 .9980 

32 .2786 .07389 

a* 0.5 1.0 

a* = theoretical order of convergence, / = mesh grading 
parameter, NSDES = number of boundary elements per 
side. 

This boundary value problem is converted into the integral equation for u = 

[tv/tn], the jump of the normal derivative of v, 

1 
1 

- u(z) log Iz-xJ dx-w = 2z for z E ro. 7r 1- 

Here we have used the condition fl u(x) dx = b, where the constant b is given by 
the asymptotic behavior of the solution v at infinity, 

v = b log ZI - w + 0(1/1zl) 

and w is a constant to be determined. In the above example, v(z) = - 1 - z 
behaves like O(1/zl) at infinity, yielding b = w = 0. In Table 1.3 we list the 
weighted L2-errors of the collocation solution for the above integral equation, where 
we set b = 0 in the compatibility condition. For all cases we compute W = 10-12. 

We also include in Table 1.3 the results when using an exponentially graded mesh 

/301. 
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